比特币源码分析教程视频比特币源码分析教程视频讲解
大家好,关于比特币源码分析教程视频很多朋友都还不太明白,今天小编就来为大家分享关于比特币源码分析教程视频讲解的知识,希望对各位有所帮助!
本文目录
比特币源代码如何修改可以变成一个新的虚拟币比特币源码研读一:椭圆曲线在比特币密码中的加密原理Java做个什么项目好黑马程序员新开了区块链课程,请问能不能学会比特币源代码如何修改可以变成一个新的虚拟币不好意思
这个你修改不了
因为这个源代码记录了比特币的一路发展过程以及开采过程中遇到的问题以及开采难易程度
有开源代码才能挖矿所以没有一个人能更改的了
比特币源码研读一:椭圆曲线在比特币密码中的加密原理参加比特币源码研读班后首次写作,看到前辈black写的有关密钥,地址写的很好了,就选了他没有写的椭圆曲线,斗胆写这一篇。
在密码学上有两种加密方式,分别是对称密钥加密和非对称密钥加密。
对称加密:加密和解密使用的同样的密钥。
非对称加密:加密和解密是使用的不同的密钥。
二战中图灵破解德军的恩尼格码应该就是用的对称加密,因为他的加密和解密是同一个密钥。比特币的加密是非对称加密,而且用的是破解难度较大的椭圆曲线加密,简称ECC。
非对称加密的通用原理就是用一个难以解决的数学难题做到加密效果,比如RSA加密算法。RSA加密算法是用求解一个极大整数的因数的难题做到加密效果的。就是说两个极大数相乘,得到乘积很容易,但是反过来算数一个极大整数是由哪两个数乘积算出来的就非常困难。
下面简要介绍一下椭圆曲线加密算法ECC。
首先椭圆曲线的通式是这个样子的:
一般简化为这个样子:
()发公式必须吐槽一下,太麻烦了。)
其中
这样做就排除了带有奇点的椭圆曲线,可以理解为所有的点都有一条切线。
图像有几种,下面列举几个:[1]
椭圆曲线其实跟椭圆关系不大,也不像圆锥曲线那样,是有圆锥的物理模型为基础的。在计算椭圆曲线的周长时,需要用到椭圆积分,而椭圆曲线的简化通式:
,周长公式在变换后有一项是这样的:,平方之后两者基本一样。
我们大体了解了椭圆曲线,就会有一个疑问,这个东西怎么加密的呢?也就是说椭圆曲线是基于怎样的数学难题呢?在此之前还得了解一些最少必要知识:椭圆曲线加法,离散型椭圆曲线。
椭圆曲线加法
数学家门从普通的代数运算中,抽象出了加群(也叫阿贝尔群或交换群),使得在加群中,实数的算法和椭圆曲线的算法得到统一。
数学中的“群”是一个由我们定义了一种二元运算的集合,二元运算我们称之为“加法”,并用符号“+”来表示。为了让一个集合G成为群,必须定义加法运算并使之具有以下四个特性:
1.封闭性:如果a和b是集合G中的元素,那么(a+b)也是集合G中的元素。
2.结合律:(a+b)+c=a+(b+c);
3.存在单位元0,使得a+0=0+a=a;
4.每个元素都有逆元,即:对于任意a,存在b,使得a+b=0.
如果我们增加第5个条件:
5.交换律:a+b=b+a
那么,称这个群为阿贝尔群。[1]
运算法则:任意取椭圆曲线上两点P、Q(若P、Q两点重合,则做P点的切线)做直线交于椭圆曲线的另一点R’,过R’做y轴的平行线交于R。我们规定P+Q=R。(如图)[2]
特别的,当P和Q重合时,P+Q=P+P=2P,对于共线的三点,P,Q,R’有P+Q+R’=0∞.
这里的0∞不是实数意义的0,而是指的无穷远点(这里的无穷远点就不细说了,你可以理解为这个点非常遥远,遥远到两条平行线都在这一点相交了。具体介绍可以看参考文献[2])。
注意这里的R与R’之间的区别,P+Q=R,R并没有与P,Q共线,是R’与P,Q共线,不要搞错了。
法则详解:
这里的+不是实数中普通的加法,而是从普通加法中抽象出来的加法,他具备普通加法的一些性质,但具体的运算法则显然与普通加法不同。
根据这个法则,可以知道椭圆曲线无穷远点O∞与椭圆曲线上一点P的连线交于P’,过P’作y轴的平行线交于P,所以有无穷远点O∞+P=P。这样,无穷远点O∞的作用与普通加法中零的作用相当(0+2=2),我们把无穷远点O∞称为零元。同时我们把P’称为P的负元(简称,负P;记作,-P)。(参见下图)
离散型椭圆曲线
上面给出的很好看的椭圆曲线是在实数域上的连续曲线,这个是不能用来加密的,原因我没有细究,但一定是连续曲线上的运算太简单。真正用于加密的椭圆曲线是离散型的。要想有一个离散型的椭圆曲线,先得有一个有限域。
域:在抽象代数中,域(Field)之一种可进行加、减、乘、除运算的代数结构。它是从普通实数的运算中抽像出来的。这一点与阿贝尔群很类似。只不过多了乘法,和与乘法相关的分配率。
域有如下性质[3]:
1.在加法和乘法上封闭,即域里的两个数相加或相乘的结果也在这个域中。
2.加法和乘法符合结合律,交换率,分配率。
3.存在加法单位,也可以叫做零元。即存在元素0,对于有限域内所有的元素a,有a+0=a。
4.存在乘法单位,也可以叫做单位元。即存在元素1,对于有限域内所有的元素a,有1*a=a。
5.存在加法逆元,即对于有限域中所有的元素a,都存在a+(-a)=0.
6.存在乘法逆元,即对于有限域中所有的元素a,都存在a*=0.
在掌握了这些知识后,我们将椭圆曲线离散化。我们给出一个有限域Fp,这个域只有有限个元素。Fp中只有p(p为素数)个元素0,1,2……p-2,p-1;
Fp的加法(a+b)法则是a+b≡c(modp);它的意思是同余,即(a+b)÷p的余数与c÷p的余数相同。
Fp的乘法(a×b)法则是a×b≡c(modp);
Fp的除法(a÷b)法则是a/b≡c(modp);即a×b∧-1≡c(modp);(也是一个0到p-1之间的整数,但满足b×b∧-1≡1(modp);
Fp的单位元是1,零元是0(这里的0就不是无穷远点了,而是真正的实数0)。
下面我们就试着把
这条曲线定义在Fp上:
选择两个满足下列条件的小于p(p为素数)的非负整数a、b,且a,b满足
则满足下列方程的所有点(x,y),再加上无穷远点O∞,构成一条椭圆曲线。
其中x,y属于0到p-1间的整数,并将这条椭圆曲线记为Ep(a,b)。
图是我手画的,大家凑合看哈。不得不说,p取7时,别看只有10个点,但计算量还是很大的。
Fp上的椭圆曲线同样有加法,法则如下:
1.无穷远点O∞是零元,有O∞+O∞=O∞,O∞+P=P
2.P(x,y)的负元是(x,-y),有P+(-P)=O∞
3.P(x1,y1),Q(x2,y2)的和R(x3,y3)有如下关系:
x3≡-x1-x2(modp)
y3≡k(x1-x3)-y1(modp)
其中若P=Q则k=(3+a)/2y1若P≠Q,则k=(y2-y1)/(x2-x1)
通过这些法则,就可以进行离散型椭圆曲线的计算。
例:根据我画的图,(1,1)中的点P(2,4),求2P。
解:把点带入公式k=(3*x∧2+a)/2y1
有(3*2∧2+1)/2*4=6(mod7).
(注意,有些小伙伴可能算出13/8,这是不对的,这里是模数算数,就像钟表一样,过了12点又回到1点,所以在模为7的世界里,13=6,8=1).
x=6*6-2-2=4(mod7)
y=6*(2-4)-4=2(mod7)
所以2P的坐标为(2,4)
那椭圆曲线上有什么难题呢?在模数足够大的情况下,上面这个计算过程的逆运算就足够难。
给出如下等式:
K=kG(其中K,G为Ep(a,b)上的点,k为小于n(n是点G的阶)的整数)不难发现,给定k和G,根据加法法则,计算K很容易;但给定K和G,求k就相对困难了。
这就是椭圆曲线加密算法采用的难题。我们把点G称为基点(basepoint),k称为私钥,K称为公钥。
现在我们描述一个利用椭圆曲线进行加密通信的过程[2]:
1、用户A选定一条椭圆曲线Ep(a,b),并取椭圆曲线上一点,作为基点G。
2、用户A选择一个私钥k,并生成公钥K=kG。
3、用户A将Ep(a,b)和点K,G传给用户B。
4、用户B接到信息后,将待传输的明文编码到Ep(a,b)上一点M(编码方法很多,这里不作讨论),并产生一个随机整数r(r<n)。
5、用户B计算点C1=M+rK;C2=rG。
6、用户B将C1、C2传给用户A。
7、用户A接到信息后,计算C1-kC2,结果就是点M。因为
C1-kC2=M+rK-k(rG)=M+rK-r(kG)=M
再对点M进行解码就可以得到明文。
整个过程如下图所示:
密码学中,描述一条Fp上的椭圆曲线,常用到六个参量:
T=(p,a,b,G,n,h),p、a、b用来确定一条椭圆曲线,G为基点,n为点G的阶,h是椭圆曲线上所有点的个数m与n相除的整数部分
这几个参量取值的选择,直接影响了加密的安全性。参量值一般要求满足以下几个条件:
1、p当然越大越安全,但越大,计算速度会变慢,200位左右可以满足一般安全要求;
2、p≠n×h;
3、pt≠1(modn),1≤t<20;
4、4a3+27b2≠0(modp);
5、n为素数;
6、h≤4。
200位位的一个数字,那得多大?而且还是素数,所以这种方式是非常安全的。而且再一次交易中,区块被记录下来只有10分钟的时间,也就是说要想解决这个难题必须在10分钟以内。即便有技术能够在10分钟以内破解了现在这个难度的加密算法,比特币社区还可以予以反制,提高破解难度。所以比特币交易很安全,除非自己丢掉密钥,否则不存在被破解可能。
第一次写一个完全陌生的数学领域的知识,也许我有错误的地方,也许有没讲明白的地方,留言讨论吧。总之写完后对比特比系统的安全性表示很放心。
参考文献
[1]椭圆曲线密码学简介
[2]什么是椭圆曲线加密(ECC)
[3]域(数学)维基百科
区块链研习社源码研读班高若翔
Java做个什么项目好小编收集了几个java练手项目,大企业实战项目教程+源码,将近5G的资料通通送给你!
项目一:Ting域主持人项目介绍:Ting域主持人项目是一个标准的互联网项目,主要为各种需要主持人的场合提供主持人聘请相关功能。项目包含了前台和后台。前台主要是让新人和婚庆公司搜索相关主持人并进行聘请,在线对主持人下订单。后台是让主持人对自己订单的管理以及管理员对整个平台的管理。
技术架构:Spring、SpringMVC、MyBatis、MyBatisPlus、移动支付、短信验证、RBAC、EasyUI、POI、百度chart
项目亮点:真实企业项目;已上线项目;包含企业产品经理设计的项目原型;标准互联网项目,包含前后端;完整的第三方平台接入
2、未来出行汽车租赁平台项目介绍:未来出行汽车租赁平台是为汽车出租、出售进行管理的平台。管理员平台中可以对租赁人和汽车进行管理。项目包含:客户管理、业务管理、系统管理、汽车管理、租赁人管理等模块。项目中还包含了完善的权限管理相关功能。
技术架构:Spring、SpringMVC、MyBatis、MyBatisPlus、移动支付、短信验证、RBAC、EasyUI、POI、百度chart
项目亮点:完善的页面资源;汽车租赁业务全部实现;概括能力强。包含了所学的全部技术
3、至尊智能家居
项目介绍:智能家居随着互联网和物联网的发展逐渐走进千家万户。智能家居的企业和工厂越来越多。至尊智能家居是智能家居企业进行综合管理的内部系统。可以实现智能家居管理、人事行政管理、系统公告、知识管理、任务管理、销售管理、项目管理、统计分析、系统设置、产品资料管理等功能。
技术架构:SpringBoot、SpringMVC、MyBatis、Druid、Logback、Quartz、Shiro、Swagger2、Linux、BootStrap
项目亮点:使用快速开发框架,真实感受最初进入企业的感觉;小组项目,完全模拟企业项目组开发中如何进行配合;Linux服务器,不仅仅是开发项目,还包含了部署项目
4、百战商城项目介绍:百战商城项目是一个大型综合性的B2C平台。完全采用SOA模式架构,使用Dubbo实现服务调用。基于高并发、海量数据环境进行实现。
百战商城分为前后台两套系统。后台系统使用FastDFS实现分布式文件存储主要负责商品管理,商品分类管理,CMS等内容。前台系统使用Redis实现缓存数据查询包含首页服务,搜索服务,单点登录服务、购物车服务,订单服务等。
技术架构:SpringBoot、SpringMVC、MyBatis、Zookeeper、Dubbo、Redis、Solr、RabbitMQ、FastDFS、Nginx、SpringSecurity、SpringSession、MyBatisPlus、MyCat
项目亮点:真实大型互联网项目呈现;SOA架构;高并发解决方案;RabbitMQ实现流量削峰和异步消息;使用Solr实现海量数据搜索;Redis缓存穿透、缓存雪崩、缓存击穿解决方案;基于Linux平台部署该项目,企业真实服务器环境;Nginx服务代理、负载均衡;使用Navicat做数据库分库分表及读写分离;FastDFS分布式文件存储;SpringSecurity完成权限验证;SpringSession分布式Session
5、Livegoods房源租赁海选平台项目介绍:本项目为前后端分离项目,移动客户端为其平台。作为互联网时代房屋平台,Livegoods拥有完善的房屋租赁资源搜索能力,可以根据城市定位,精确高效的搜索到需要的租赁房源信息。本系统分为租客平台、业主平台、用户管理平台两大功能平台。
技术架构:SpringBoot、SpringMVC、MyBatis、SpringDataMongoDB、SpringData、ElasticSearch、MongoDB、SpringCloud、ElasticSearch、FastDFS、Nginx、支付
项目亮点:前后端分离项目,感受目前企业开发最主流的前后端分离开发模式;移动端项目,可以感受Java程序员开发app服务端的实现过程;微服务架构;秒杀系统实现;海量数据搜索;镜像和云
6、数字货币交易所项目
项目介绍:开源数字货币交易所,基于Java开发的比特币交易所,包含BTC交易所、ETH交易所、数字货币交易所、交易平台、撮合交易引擎等核心模块。项目技术采用业界最流行、社区非常活跃的开源组件SpringCloudAlibaba来构建我们的交易系统,是行业第一家基于Alibaba技术的大型项目,也是SpringCloud的最佳实践之一。
项目架构:
后端技术:SpringCloudAlibaba+SpringBoot+MybatisPlus+Elasticsearch+Kafka+Mongodb+Zookeeper+RocketMQ+OAuth2、0+Jwt+Redis+Hutool+Orika+Fst+Swagger-ui+Mycat+Docker+ECS+OSS+腾讯防水墙
前端技术:Vue+iView+less+axios
7、尚学堂OA系统项目介绍:尚学堂OA系统取自真实的尚学堂办公自动化平台,包括人事管理、考勤管理、报销管理、收支管理等多个模块。可以全面练习JSP/Servlet核心技能、MVC模式、Ajax、数据库设计和多表SQL语句操作、PowerDesigner绘制数据库模型图、业务流程图、多种面向对象模型图,还有验证码、POI、Echarts、JUnit、kindeditor、My97DatePicker等辅助技术。通过该项目,学生熟悉项目设计开发流程,具有自主设计和开发项目初步能力。
功能模块:尚学堂OA系统:包括人事管理、考勤管理、报销管理、收支管理等多个模块。包含人事管理中的部门管理、岗位管理练习单表的MVC操作,人事管理中的员工管理练习多表的MVC操作。考勤管理练习Ajax的应用。报销管理涉及理解业务流程、异常链、事务管理等多项技能。收支管理主要是练习Echarts图表插件的使用,使用柱状图、饼图等直观显示统计数据。
需要java项目资料的小伙伴可以添加一下分享资料的官方老师WX:18731997677,备注“gx尚学堂”可以找老师免费领取几649套简历模板哦!
黑马程序员新开了区块链课程,请问能不能学会黑马的go语言与区块链已成为黑马的耻辱,垃圾学科,说是go服务器开发和区块链开发两个方向,但是5个月的课程学完,go只学了个一个月的基础,并发只讲了简单的爬虫,就在官网宣传可以做高并发的后台服务器开发,完全是虚假宣传,吸血工厂,多少人贷款来学,结果浪费半年时间可能还要面临找不到工作
好了,关于比特币源码分析教程视频和比特币源码分析教程视频讲解的问题到这里结束啦,希望可以解决您的问题哈!